首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5255篇
  免费   291篇
  国内免费   121篇
  2024年   2篇
  2023年   50篇
  2022年   47篇
  2021年   94篇
  2020年   97篇
  2019年   118篇
  2018年   136篇
  2017年   127篇
  2016年   112篇
  2015年   168篇
  2014年   261篇
  2013年   348篇
  2012年   141篇
  2011年   214篇
  2010年   175篇
  2009年   225篇
  2008年   279篇
  2007年   298篇
  2006年   273篇
  2005年   237篇
  2004年   243篇
  2003年   216篇
  2002年   192篇
  2001年   124篇
  2000年   137篇
  1999年   133篇
  1998年   119篇
  1997年   151篇
  1996年   104篇
  1995年   101篇
  1994年   84篇
  1993年   97篇
  1992年   88篇
  1991年   69篇
  1990年   73篇
  1989年   64篇
  1988年   56篇
  1987年   41篇
  1986年   25篇
  1985年   40篇
  1984年   33篇
  1983年   21篇
  1982年   20篇
  1981年   12篇
  1980年   9篇
  1979年   7篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
排序方式: 共有5667条查询结果,搜索用时 171 毫秒
91.
We study the effect of micro-scale electric fields on voltage-gated ion channels in mammalian cell membranes. Such micro- and nano-scale electric fields mimic the effects of multiferroic nanoparticles that were recently proposed [1] as a novel way of controlling the function of voltage-sensing biomolecules such as ion channels. This article describes experimental procedures and initial results that reveal the effect of the electric field, in close proximity of cells, on the ion transport through voltage-gated ion channels. We present two configurations of the whole-cell patch-clamping apparatus that were used to detect the effect of external stimulation on ionic currents and discuss preliminary results that indicate modulation of the ionic currents consistent with the applied stimulus.  相似文献   
92.
93.
A neuronal morphological phenotype can be induced in cultured Spodoptera frugiperda insect cells (Sf21) by supplementing serum‐containing media with 20‐hydroxyecdysone (20‐HE) and/or insulin. In this study, the primary objectives were to determine any role of ion channels in mediating the morphological change in cells treated with 20‐HE and insulin, and whether serum was required to observe this effect. Results showed serum‐free media also induced growth of processes in Sf21 cells, but at a lower percentage than that found previously in cells bathed in serum‐containing media. Veratridine, a sodium channel activator, increased cell survival when applied in combination with 20‐HE to Sf21 cells, and the effect was blocked by tetrodotoxin (1 μM) a known sodium channel blocker. Cobalt, a calcium channel blocker, showed significant inhibition of cell process growth when applied in combination with both 20‐HE and 20‐HE plus veratridine. Cobalt also showed significant inhibition of cell process growth when applied in combination with insulin. Thus, some type of sodium channel, as well as a mechanism for transmembrane calcium ion movement, are apparently expressed in Sf21 cells and are involved in the differentiation process. These cell lines may be used in a wide variety of endeavors, including the screening of insecticides, as well as foster basic studies of neurodevelopment and ecdysone action.  相似文献   
94.
Hyuntae Na  Guang Song 《Proteins》2015,83(4):757-770
Ligand migration and binding are central to the biological functions of many proteins such as myoglobin (Mb) and it is widely thought that protein breathing motions open up ligand channels dynamically. However, how a protein exerts its control over the opening and closing of these channels through its intrinsic dynamics is not fully understood. Specifically, a quantitative delineation of the breathing motions that are needed to open ligand channels is lacking. In this work, we present and apply a novel normal mode‐based method to quantitatively delineate what and how breathing motions open ligand migration channels in Mb and its mutants. The motivation behind this work springs from the observation that normal mode motions are closely linked to the breathing motions that are thought to open ligand migration channels. In addition, the method provides a direct and detailed depiction of the motions of each and every residue that lines a channel and can identify key residues that play a dominating role in regulating the channel. The all‐atom model and the full force‐field employed in the method provide a realistic energetics on the work cost required to open a channel, and as a result, the method can be used to efficiently study the effects of mutations on ligand migration channels and on ligand entry rates. Our results on Mb and its mutants are in excellent agreement with MD simulation results and experimentally determined ligand entry rates. Proteins 2015; 83:757–770. © 2015 Wiley Periodicals, Inc.  相似文献   
95.
Although many studies concerning the sensitivity mechanism of scorpion toxin-potassium channel interactions have been reported, few have explored the biochemical insensitivity mechanisms of potassium channel receptors toward natural scorpion toxin peptides, such as the KCNQ1 channel. Here, by sequence alignment analyses of the human KCNQ1 channel and scorpion potassium channel MmKv2, which is completely insensitive to scorpion toxins, we proposed that the insensitivity mechanism of KCNQ1 toward natural scorpion toxins might involve two functional regions, the turret and filter regions. Based on this observation, a series of KCNQ1 mutants were constructed to study molecular mechanisms of the KCNQ1 channel insensitivity toward natural scorpion toxins. Electrophysiological studies of chimera channels showed that the channel filter region controls KCNQ1 insensitivity toward the classical scorpion toxin ChTX. Interestingly, further residue mutant experiments showed that a single basic residue in the filter region determined the insensitivity of KCNQ1 channels toward scorpion toxins. Our present work showed that amino acid residue diversification at common sites controls the sensitivity and insensitivity of potassium channels toward scorpion toxins. The unique insensitivity mechanism of KCNQ1 toward natural scorpion toxins will accelerate the rational design of potent peptide inhibitors toward this channel.  相似文献   
96.
Protoplasts from dark-grown wheat (Triticum aestivum L.) maintained at a constant osmotic potential at 22°C, were found to swell upon red irradiation (R) and the effect was negated by subsequent far-red light (FR), indicating phytochrome involvement. Swelling only occurred when Ca2+ ions were present in the surrounding medium, or were added within 10 min after R. Furthermore, Mg2+, Ba2+ or K+ could not replace this requirement for Ca2+. The presence of K+ did not enhance the Ca2+-dependent swelling response. When the Ca2+-ionophore A 23187 was added to the medium, protoplasts swelled in the dark to the same extent as after R. Both the Ca2+-channelblocker Verapamil and La3+ inhibited R-induced swelling. It is proposed that R causes the opening of Ca2+-channels in the plasma membrane. Boyle-van't Hoff analyses of protoplast volume after R and FR are consistent with the conclusion that R irradiation causes changes in membrane properties.Abbreviations EDTA ethylenediaminetetraacetic acid - FR far-red light - nov non-osmotic-volume - Pfr FR-absorbing form of phytochrome - Pr R-absorbing form of phytochrome - R red light  相似文献   
97.
Transient-receptor-potential channels (TRPs) underlie the sensing of chemicals, heat, and mechanical force. We expressed the rat TRPV1 and TRPV4 subtypes in yeast and monitored their activities in vivo as Ca2+ rise using transgenic aequorin. Heat and capsaicin activate TRPV1 but not TRPV4 in yeast. Hypotonic shocks activate TRPV4 but not TRPV1. Osmotic swelling is modeled to activate enzyme(s), producing polyunsaturated fatty acids (PUFAs) to open TRPV4 in mammalian cells. This model relegates mechanosensitivity to the enzyme and not the channel. Yeast has only a single Δ9 fatty-acid monodesaturase and cannot make PUFAs suggesting an alternative mechanism for TRPV4 activation. We discuss possible explanations of this difference.  相似文献   
98.
To study delayed cerebral vasospasm (DCVS) induced by subarachnoid hemorrhage (SAH), 60 healthy Sprague Dawley (SD) rats were randomly divided into 5 groups (12 rats in each group), namely sham operation group, blood injection model group, nimodipine group, flunarizine hydrochloride group, and normal group. Then, the physiological parameters were detected, and after the rats were killed under anesthesia, the degree of nerve injury, vasospasm as well as the therapeutic effect of drugs were evaluated by Western Blot (WB). Neurological impairment (NI), endothelial contraction and spasm were obvious in rats following blood injection. The expression of Cav3.1 on T-type calcium channels was significantly higher in the blood injection model group than in the sham operation group along with the normal group. Moreover, Cav3.1 mRNA was expressed in all groups. The Cav3.1 expression in blood injection model group and two drug groups were significantly higher than that in sham operation group and lower than that in blood injection model group. Vasospasm was improved in two drug groups, which indicated that calcium channel antagonists nimodipine and flunarizine hydrochloride had a certain therapeutic effect on DCVS in rats. The decrease in body weight and food intake of the two groups of rats treated with drugs decreased, and the delayed vasospasm was improved, but the expression of Cav3.1 was not changed significantly, indicating nimodipine and flunarizine hydrochloride had a therapeutic effect on delayed vasospasm in rats, but Cav3.1 expression on calcium channels was not affected.  相似文献   
99.
耿佳  郭培宣 《生命科学》2011,(11):1114-1129
生命系统包含了具有不同功能的纳米机器和高度有序的大分子结构。所有的双链线性DNA病毒使用由ATP驱动的纳米分子马达将其基因包装在蛋白质外壳内。噬菌体phi29 DNA包装马达的核心组成部分连接器已被成功嵌入到脂双层中,极为稳定且可用于离子和DNA转运的精确测量。它在包装DNA时具有单向通行的阀门机制,同时其关闭和打开可由人工控制。这对于详细研究分子马达的操作机制及未来医药应用中DNA的包装、测序、采样和投递都具有重要意义。  相似文献   
100.
The surfactin can inhibit proliferation and induce apoptosis in cancer cells. Moreover, surfactin can induce cell death in human breast cancer MCF-7 cells through mitochondrial pathway. However, the molecular mechanism involved in this pathway remains to be elucidated. Here, the reactive oxygen species (ROS) and Ca2+ on mitochondria permeability transition pore (MPTP) activity, and MCF-7 cell apoptosis which induced by surfactin were investigated. It is found that surfactin evoked mitochondrial ROS generation, and the surfactin-induced cell death was prevented by N-acetylcysteine (NAC, an inhibitor of ROS). An increasing cytoplasmic Ca2+ concentration was detected in surfactin-induced MCF-7 apoptosis, which was inhibited by 1,2-bis (2-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid (BAPTA-AM, a chelator of calcium). In addition, the relationship between ROS generation and the increase of cytoplasm Ca2+ was determined. The results showed that surfactin initially induced the ROS formation, leading to the MPTP opening accompanied with the collapse of mitochondrial membrane potential (ΔΨm). Then the cytoplasmic Ca2+ concentration increased in virtue of the changes of mitochondrial permeability, which was prevented by BAPTA-AM. Besides, cytochrome c (cyt c) was released from mitochondria to cytoplasm through the MPTP and activated caspase-9, eventually induced apoptosis. In summary, surfactin has notable anti-tumor effect on MCF-7 cells, however, there was no obvious cytotoxicity on normal cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号